
Individual Assignment on Electronics Circuit I

(Submission Date: 22.03.2023)

- 1. In the circuit shown in Figure 1 considering D_1 and D_2 are ideal diodes. Given that $V_1=5V$, $V_2=3V$, $V_S=5V$ and $R=500\Omega$.
 - a. Find the current iD1 and iD2
 - b. Determine the state of the diodes D_1 and D_2 .

Figure 1

2. The diode in the circuit of Figure 2 has a non-linear terminal characteristic shown in figure 3. Given $V_s = 0.1 \cos \omega t V$ volts and V1=2V. then find i_D and V_D.

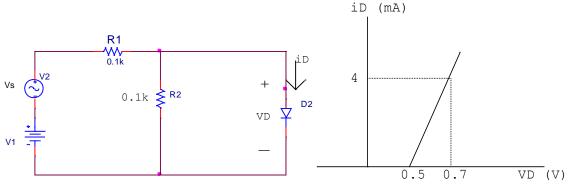


Figure 2

3. The two Zener diodes shown in the Figure 3 have negligible forward drop and both regulate at constant V_z for $50mA \le i_2 \le 500mA$. If $R_1 = R_L = 10\Omega$, $V_{z1} = 8V$ and $V_{z2} = 5V$. Find the average value of the load voltage when V_i is a 10V square wave.

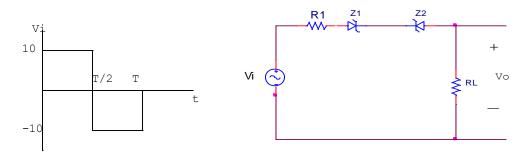
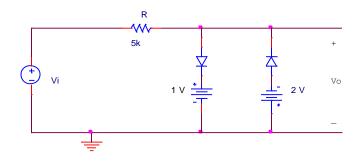



Figure 3

- 4. For the network shown in Figure 4, draw
 - a. V-I characteristics
 - b. Transfer characteristics i.e., output versus input voltage
 - c. The output voltage for parallel or combined clipper

Assume the diodes are ideal

5. Design a clamper to perform the function indicated in Figure 5

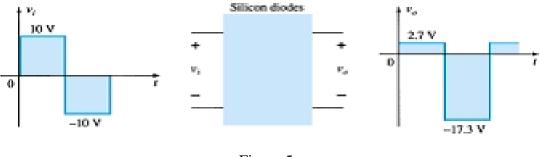
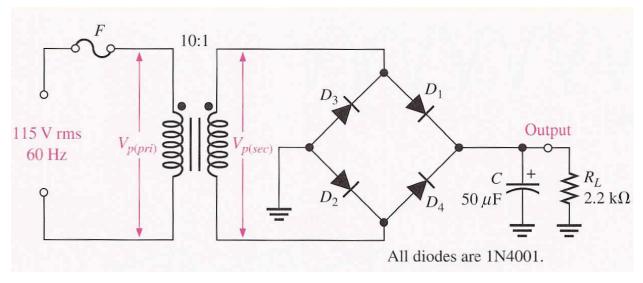
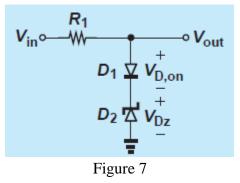
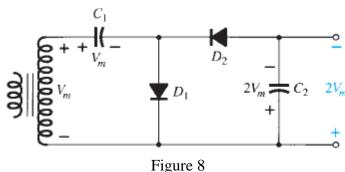



Figure 5


6. Design a cellphone charger. The charger converts the line ac voltage at 220V and 50Hz to a dc voltage of 3.5V. List all necessary components with explanation!

7. Determine the ripple factor for the filtered bridge rectifier with load as indicated in Figure 6



8. In the circuit of Figure 7, V_{in} has a nominal value of 5 V, $R_1 = 100 \Omega$, and D_2 has a reverse breakdown of 2.7V and a small-signal resistance of 5 Ω . Assuming V_D , $on \approx 0.8V$ for D_1 , determine the line and load regulation of the circuit.

9. Determine the voltage available from the voltage doubler of Figure 8 if the secondary voltage of the transformer is 120V(rms) and also determine the required PIV ratings of the diodes in terms of the peak secondary voltage V_m .

